bonjour, j’aurai besoin d’aide pour la question deux s’il vous plaît je n’y arrive pas, merci d’avance
                Question
            
            
               1 Réponse
            
            - 
			  	1. Réponse taalbabachirRéponse : 2) AB = 4 cm et SP = 2 cm a) calculer l'aire d'une face triangulaire de la pyramide SABCD, puis l'aire d'une face triangulaire de la pyramide RDCEF. * calculons la longueur d'une diagonale le triangle ABC est rectangle en B (car ABCD est un carré) d'après le th.Pythagore, on a; AC² = AB² + BC² = 2 x AB² (car AB = BC) ⇔ AC² = 2 x 4² ⇒ AC = 4√2 cm = BD (AC = BD car ABCD carré) donc PB = 4√2/2 = 2√2 cm * calculons la longueur SB SPB triangle rectangle en P donc th.Pythagore SB² = PB² + SP² ⇔ SB² = (2√2)² + 2² = 12 ⇒ SB = √12 = 2√3 cm soit H le projeté orthogonal de S sur (AB) SBH triangle rectangle en H ⇒ th.Pythagore on a; SB² = SH²+HB² ⇔ SH² = SB² - HB² = 12 - 2² = 8 ⇒ SH = √8 = 2√2 cm l'aire d'une face SAB est : A = 1/2(SH x AB) = 1/2(2√2 x 4) = 4√2 cm² * Pyramide RDCEF calculons la longueur RC RQC triangle rectangle en Q ⇒ th.Pythagore, RC² = QC² + RQ² ⇔ RC² = (2√2)² + 4² = 8 + 16 = 24 ⇒ RC = √24 = 2√6 cm soit H' le projeté orthogonal de R sur (CD) RH'C triangle rectangle en H' ⇒ th.Pythagore RC² = RH'² + H'C² ⇔ RH'² = RC² - H'C² = 24 - 4 = 20 ⇒ RH' = √20 cm = 2√5 cm l'aire d'une face RDC est : A = 1/2(2√5 x 4) = 4√5 cm² b) calculer la distance RS Soit N le projeté orthogonal de S sur (RQ) le triangle SRN est rectangle en N ⇒ SR² = RN²+SN² ⇔ SR² = 2² + 4² = 20 ⇒ SR = √20 cm = 2√5 cm c) volume de la pyramide SABCD : v = 1/3(16 x 2) = 32/3 cm³ ≈ 10.67 cm³ // // RDCEF : V = 1/3(16 x 4) = 64/3 cm³ ≈ 21.33 cm³ Explications étape par étape :